Size of this preview: 768 × 600 pixels. Other resolutions: 307 × 240 pixels | 615 × 480 pixels | 983 × 768 pixels | 1,280 × 1,000 pixels.
Original file (1,280 × 1,000 pixels, file size: 453 KB, MIME type: image/png)
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 23:23, 7 November 2008 | 1,280 × 1,000 (453 KB) | Geek3 | == Summary == {{Information |Description= <math>|\Gamma(x + iy)|</math> {{en|1 = 3-dimensional plot of the absolute value of the complex gamma function}} |Source = Own work by uploader |Date = 2008 |Author = Geek3 |Permission = |other_vers |
File usage
The following 33 pages use this file:
- Analytic function
- Analyticity of holomorphic functions
- Antiderivative (complex analysis)
- Argument principle
- Cauchy's integral formula
- Cauchy's integral theorem
- Cauchy–Riemann equations
- Complex analysis
- Complex plane
- Conformal map
- Factorial
- Formal power series
- Gamma function
- Grunsky matrix
- Harmonic function
- Holomorphic function
- Isolated singularity
- Laplace's equation
- Laurent series
- Meromorphic function
- Morera's theorem
- Residue (complex analysis)
- Residue theorem
- Riemann mapping theorem
- Rouché's theorem
- Schwarz lemma
- Schwarz triangle function
- Winding number
- Zeros and poles
- Talk:Gamma function/Archive 2
- User:RazrRekr201/Table of constants
- User:SteveChervitzTrutane
- Template:Complex analysis sidebar
Global file usage
The following other wikis use this file:
- Usage on ar.wikipedia.org
- Usage on ast.wikipedia.org
- Usage on be.wikipedia.org
- Usage on bg.wikipedia.org
- Usage on ca.wikipedia.org
- Usage on cs.wikipedia.org
- Usage on da.wikipedia.org
- Usage on de.wikipedia.org
- Usage on de.wikibooks.org
- Usage on el.wikipedia.org
- Usage on en.wikibooks.org
- Usage on es.wikipedia.org
- Usage on et.wikipedia.org
- Usage on eu.wikipedia.org
- Usage on fa.wikipedia.org
- Usage on fr.wikipedia.org
View more global usage of this file.