Neutrino experiments are scientific studies investigating the properties of neutrinos, which are subatomic particles that are very difficult to detect due to their weak interactions with matter. Neutrino experiments are essential for understanding the fundamental properties of matter and the universe's behaviour at the subatomic level. Here is a non-exhaustive list of neutrino experiments, neutrino detectors, and neutrino detectors.
Abbreviation | Full name | Sensitivity[a] | Type | Induced reaction | Type of reaction[b] | Detector | Type of detector | Threshold energy | Location | Operation | Home page | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ANNIE | Accelerator Neutrino Neutron Interaction Experiment | SciBooNE Hall, Illinois, United States | future | [1] | ||||||||||
ANTARES | Astronomy with a Neutrino Telescope and Abyss Environmental RESearch | ATM, CR, AGN, PUL | ν e, ν μ, ν τ |
Seawater | Cherenkov | Mediterranean Sea, France | 2006– | [2] | ||||||
ARIANNA | Antarctic Ross Ice-Shelf ANtenna Neutrino Array | S, CR, AGN, ? | ν e, ν μ, ν τ |
Ross Ice Shelf, Antarctica | future | [3] | ||||||||
BDUNT (NT-200+) Baikal-GVD |
Baikal Deep Underwater Neutrino Telescope / Gigaton Volume Detector |
S, ATM, LS, AGN, PUL | ν e, ν μ, ν τ |
CC, NC | Water (H2O) | Cherenkov | ≈10 GeV | Lake Baikal, Russia | 1993– | [4] [5] | ||||
BOREXINO | BORon EXperiment | LS | ν e |
ν x + e− → ν x + e− |
ES | LOS shielded by water | Scintillation | 250–665 keV | Gran Sasso, Italy | May 2007– | [6] [7] | |||
BUST | Baksan Underground Scintillation Telescope | Scintillation | Baksan River valley, Russia | 1977– | [8] | |||||||||
CCM | Coherent CAPTAIN-Mills | AC | ν e |
CC | Liquid Argon | Scintillation | 50 keV | Los Alamos Neutron Science Center | 2019- | [9] | ||||
CHANDLER | Carbon Hydrogen AntiNeutrino Detector with a Lithium Enhanced Raghavan-optical-lattice | R | ν e |
ν e + p → e+ + n |
CC | WLS Plastic Scintillating Cubes and Lithium-6-loaded Zinc Sulfide Sheets | Scintillation | 1.8 MeV | North Anna, Virginia, US | June 2017- | [10] | |||
CLEAN | Cryogenic Low-Energy Astrophysics with Neon | LS, SN, WIMP | ν e |
ν x + e− → ν x + e−
|
ES ES |
Liquid Ne (10 t) | Scintillation | SNOLAB Ontario, Canada |
future | [11] | ||||
COBRA | Cadmium zinc telluride 0-neutrino double-Beta Research Apparatus | 64 Zn + e− → 64 Ni + e+ 70 Zn → 70 Ge + e− + e− 106 Cd → 106 Pd + e+ + e+ 108 Cd + e− + e− → 108 Pd 114 Cd → 114 Sn + e− + e− 116 Cd → 116 Sn + e− + e− 120 Te + e− → 120 Sn + e+ 128 Te → 128 Xe + e− + e− 130 Te → 130 Xe + e− + e− |
BB | Cadmium zinc telluride | Gran Sasso, Italy | 2007– | [12] | |||||||
COHERENT | COHERENT | AC | ν μ, ν μ, ν e |
ν + nucleus → ν + nucleus |
NC | CsI[Na], NaI[Tl], HPGe, LAr | Coherent Elastic Neutrino Nucleus Scattering (CEvNS) | few keV nuclear recoil energy | Spallation Neutron Source at Oak Ridge National Laboratory | Nov 2016- | [13] | |||
Daya Bay | Daya Bay Reactor Neutrino Experiment | R | ν e |
ν e + p → e+ + n |
CC | Gd-doped LAB (LOS) | Scintillation | 1.8 MeV | Daya Bay, China | 2011–2020 | [14] | |||
Double Chooz | Double Chooz Reactor Neutrino Experiment | R | ν e |
ν e + p → e+ + n |
CC | Gd-doped LOS | Scintillation | 1.8 MeV | Chooz, France | 2011–2017 | [15] | |||
DUNE | Deep Underground Neutrino Experiment | AC, ATM, (S), SN | all | NC, CC, (ES) | Liquid argon | Scintillation & Time projection chamber | around 10 MeV | Sanford Underground Research Facility | construction start 2017 | [16] | ||||
ENUBET | Enhanced NeUtrino BEams from kaon Tagging | AC | ν e, ν μ ν e, ν μ |
ν e + n → e− + p (+π, +X) ν μ + n → μ− + p (+π, +X)
|
CC
(NC) |
future | [17] | |||||||
ESSnuSB | The European Spallation Source neutrino Super Beam | AC | ν μ, ν μ(Background: ν e, ν e) |
Water | Water Cherenkov MEMPHYS detector | 0.36 GeV | Garpenberg, Lund, Sweden | future by 2023 | [1][2][18] | |||||
FASER | ForwArd Search ExpeRiment | C | ν e, ν μ, ν τ |
ν + N → ℓ + X |
CC + NC | Tungsten | Emulsion | >10 GeV | Large Hadron Collider | 2022- | [19] | |||
EXO-200 | Enriched Xenon Observatory | 134 Xe → 134 Ba + e− + e− 136 Xe → 136 Ba + e− + e− |
BB | Liquid Xenon | WIPP, New Mexico | 2009– | [20] | |||||||
GALLEX | GALLium EXperiment | LS | ν e |
ν e + 71 Ga → 71 Ge + e− |
CC | GaCl3 (30 t) | Radiochemical | 233.2 keV | Gran Sasso, Italy | 1991–1997 | [21] | |||
GERDA | The GERmanium Detector Array | BB | ν e |
76 Ge → 76 As + e− + e− |
BB | HPGe | Semiconductor | Gran Sasso, Italy | [22] | |||||
GRAND | Giant Radio Array for Neutrino Detection | AGN, CR, ? | ν τ |
ν τ + N → τ− + X |
CC | Electromagnetic waves caused by τ− through extensive air showers in the atmosphere. |
Radio | 1017 eV | China | Proposed | [23] | |||
HALO | Helium And Lead Observatory | SN | ν e, ν x |
ν e + 208 Pb → e− + 209 Bi * ν + 208 Pb → ν + 208 Pb * |
CC, NC | Lead (79 t) and 3He | High-Z | ≈10 MeV | Creighton Mine, Ontario | 2012– | [24] | |||
HERON | Helium Roton Observation of Neutrinos | LS | ν e (mainly) |
ν e + e− → ν e + e− |
NC | Superfluid He | Rotational excitation | 1 MeV | future | [25] | ||||
HOMESTAKE–CHLORINE | Homestake chlorine experiment | S | ν e |
37 Cl + ν e → 37 Ar * + e− 37 Ar * → 37 Cl + e+ + ν e |
CC | C2Cl4 (615 t) | Radiochemical | 814 keV | Homestake Mine, South Dakota | 1967–1998 | [26] | |||
HOMESTAKE–IODINE | Homestake iodine experiment | S | ν e |
ν + e− → ν + e− ν e + 127 I → 127 Xe + e− |
ES CC |
NaI in water | Radiochemical | 789 keV | Homestake Mine, South Dakota | future | [27] | |||
Hyper-Kamiokande | Hyper-Kamiokande | S, ATM, SN, AC | ν e, ν μ ν e, ν μ |
ν e + e− → ν e + e−
|
ES, CC, (NC) | water | Cherenkov | 200 MeV | Tokai and Kamioka, Japan | 2027- (under construction) |
[28] | |||
ICARUS | Imaging Cosmic And Rare Underground Signal | S, ATM, GSN | ν e, ν μ, ν τ |
ν + e− → ν + e− |
ES | Liquid Ar | Cherenkov | 5.9 MeV | Gran Sasso, Italy | 2010– | [29] | |||
IceCube | IceCube Neutrino Detector | ATM, CR, AGN, ? | ν e, ν μ, ν τ |
ν + N → ν + Cascade , ν + N → Charged lepton + Cascade |
CC, NC | Water ice (1 km3) | Cherenkov | ≈10 GeV | South Pole, Antarctica | 2006– | [30] | |||
India-based Neutrino Observatory | Iron Calorimeter Detector @ India-based Neutrino Observatory | ATM | ν μ |
ν μ+Fe→ μ− +X |
CC (dominant), NC | Magnetised iron (50 kton) | RPC active detector elements | ≈0.6 GeV | Theni, Tamil Nadu, India | 2012– (lab construction); 2018– (detector operation) | [31] | |||
JUNO | Jiangmen Underground Neutrino Observatory | R | ν e |
ν e + p → e+ + n |
CC | LAB (LOS) + PPO + Bis-MSB | Scintillation | Kaiping, China | 2014– (construction) | [32] | ||||
Kamiokande | Kamioka Nucleon Decay Experiment | S, ATM | ν e |
ν + e− → ν + e− |
ES | Water (H2O) | Cherenkov | 7.5 MeV | Kamioka, Japan | 1986–1995 | [33] | |||
KamLAND | Kamioka Liquid Scintillator Antineutrino Detector | R | ν e |
ν e + p → e+ + n |
CC | LOS | Scintillation | 1.8 MeV | Kamioka, Japan | 2002– | [34] | |||
KM3NeT | KM3 Neutrino Telescope | S, ATM, CR, SN, AGN, PUL | ν μ, ν e, ν τ |
Sea water (≈5 km3) | Cherenkov | Mediterranean Sea | 2014– | [35] | ||||||
LAGUNA | Large Apparatus studying Grand Unification and Neutrino Astrophysics | future | [36] | |||||||||||
LENS | Low Energy Neutrino Spectroscopy | LS | ν e |
ν e + 115 In → 115 Sn + ν e + 2 γ |
CC | In-doped LOS | Scintillation | 120 keV | proposed | [37] [38] | ||||
Majorana Demonstrator | The Majorana Demonstrator | BB | ν e |
76 Ge → 76 As + e− + e− |
BB | HPGe | Semiconductor | 2039 keV | Homestake Mine, South Dakota | construction start 2012 | [39] | |||
MicroBooNE | AC, SN | ν e, ν μ |
ES, NC, CC | Liquid Argon | TPC | few MeV | Illinois, United States | 2014- | [40] | |||||
MINERvA | Main Injector ExpeRiment for v-A | AC | ν μ |
many | CC, NC | Solid scintillator, targets of Liquid helium, Carbon, Water, Iron, Lead | Scintillation | ≈0.5 GeV | Illinois, United States | 2009–2019 | [41] | |||
MiniBooNE | Mini Booster Neutrino Experiment | AC | ν e, ν μ |
ν e + 12 C → e− + X |
CC | Mineral oil (1000 t) | Cherenkov | ≈100 keV | Illinois, United States | 2002– | [42] | |||
MINOS | Main Injector Neutrino Oscillation Search | AC, ATM | ν e, ν μ |
ν μ+nucleus → μ− +X |
CC, NC | Solid scintillator | Scintillation | ≈0.5 GeV | Illinois and Minnesota, United States | 2005–2012 | [43] | |||
MINOS+ | Upgraded electronics for MINOS | AC, ATM | ν e, ν μ, |
ν μ+nucleus → μ− +X |
CC, NC | Solid scintillator | Scintillation | ≈0.5 GeV | Illinois and Minnesota, United States | 2013– | [44] | |||
MOON | Molybdenum Observatory Of Neutrinos | LS, LSN | ν e |
ν e + 100 Mo → 100 Tc + e− |
CC | 100 Mo (1 kt) + MoF6 (gas) |
Scintillation | 168 keV | Washington, United States | [45] | ||||
NEMO-3 | Neutrino Ettore Majorana Observatory | BB | ν e |
100 Mo → 100 Ru + 2 e− 100 |
BB | Tracker + calorimeter | He+Ar wire chamber, plastic scintillators | 150 keV | Modane Underground Laboratory, Fréjus Road Tunnel, France | 2003–2011 | [46] | |||
NEMO Telescope | NEutrino Mediterranean Observatory | Mediterranean Sea, Italy | 2007– | [47] | ||||||||||
NEVOD | Cherenkov water detector NEVOD | ATM, CR | ν μ |
ν μ + n → μ− + p ν μ + p → μ+ + n |
CC | Water (H2O) | Cherenkov | ≈2 GeV | Moscow, Russia | 1993– | [48] | |||
NEXT | Neutrino Experiment with a Xenon Time Projection Chamber | BB | 136 Xe → 136 Ba + 2 e− |
BB | Gaseous Xenon | Time projection chamber | ≈10 keV | Canfranc, Spain | 2016– | [49] | ||||
NOνA | NuMI Off-Axis νe Appearance | AC | ν e, ν μ |
ν e+nucleus → e− +X |
CC | Liquid scintillator | Scintillation | ≈0.1 GeV | Illinois and Minnesota, United States | 2011– | [50] | |||
OPERA | Oscillation Project with Emulsion-tRacking Apparatus | AC | ν τ |
ν τ+nucleus → τ− +X |
CC | Lead/Emulsion | Nuclear Emulsion | ≈1.0 GeV | LNGS (Italy) and CERN | 2008– | [51] | |||
Auger | Pierre Auger Observatory | CR | Cherenkov | Argentina | [52] | |||||||||
RENO | Reactor Experiment for Neutrino Oscillation | R | ν e |
ν e + p → e+ + n |
CC | Gd-doped LOS | Scintillation | 1.8 MeV | South Korea | 2011– | ||||
RNO-G | Radio Neutrino Observatory Greenland | CR, AGN, ? | ν e, ν μ, ν τ |
CC, NC | In-Ice | Radio | >10 PeV | Summit Camp, Greenland | 2021– | [53] | ||||
SAGE | Soviet–American Gallium Experiment | LS | ν e |
ν e + 71 Ga → 71 Ge + e− |
CC | Ga (metallic) | Radiochemical | 233.2 keV | Baksan River valley, Russia | 1989– | [54] | |||
SciBooNE | SciBar (Scintillator Bar) Booster Neutrino Experiment | AC | ν μ |
ν μ + 12 C → μ− + X |
CC, NC | Plastic (CH,10 ton) | Scintillation | ≈100 keV | Illinois, United States | 2007–2008 | [55] | |||
SNO | Sudbury Neutrino Observatory | S, ATM, GSN | ν e, ν μ, ν τ |
ν e + 2 D → 2 p + e− ν x + 2 D → ν x + n + p ν e + e− → ν e + e− |
CC NC ES |
Heavy water (1 kt D2O) | Cherenkov | 3.5 MeV | Creighton Mine, Ontario | 1999–2006 | [56] | |||
SNO+ | SNO with liquid scintillator | S,LS,R,T,
SN,LSN |
ν e |
ν x + e− → ν x + e−
|
ES, BB | linear alkylbenzene (LAB) + PPO | Scintillation | ≈≤1MeV | Creighton Mine, Ontario | 2014– | [57] | |||
SoLid | Short baseline Oscillation Search with Lithium-6 Detector | R | ν e |
ν e + p → e+ + n |
CC | plastic and anorganic scintillator | Scintillation | ≈2 MeV | Mol, Belgium | 2015- | [58] | |||
STEREO | STErile neutrino REactor Oscillation experiment | R | ν e |
ν e + p → e+ + n |
CC | liquid organic scintillator loaded with Gd | Scintillation | ≈2 MeV | Grenoble, France | 2013– | [59] | |||
Super-K | Super-Kamiokande | S, ATM, GSN | ν e, ν μ, ν τ |
ν e + e− → ν e + e− ν e + n → e− + p ν e + p → e+ + n |
ES CC CC |
Water (H2O) | Cherenkov | 200 MeV | Kamioka, Japan | 1996– | [60] [61] | |||
SuperNEMO | SuperNEMO | BB | ν e |
100 Se → 100 Kr + 2 e− 150 Nd → 150 Sm + 2 e− |
BB | Tracker + calorimeter | He+Ar wire chamber, plastic scintillators | 150 keV | Modane Underground Laboratory, Fréjus Road Tunnel, France | 2017– | [62] | |||
TRIDENT | TRopIcal DEep-sea Neutrino Telescope | S, ATM, CR, SN, AGN, PUL | ν e, ν μ, ν τ |
CC, NC | Seawater (7.5 cubic km) | Cherenkov | Western Pacific Ocean | Proposed Pilot: 2026 |
[63] | |||||
T2K | Tokai to Kamioka | AC | ν e, ν μ ν e, ν μ |
ν e + n → e− + p (+π, +X) ν μ + n → μ− + p (+π, +X)
|
CC
(NC) |
Water (H2O) | Cherenkov |
|
Tokai, Japan Kamioka, Japan | 2011– | [64] | |||
UNO | Underground Nucleon decay and neutrino Observatory | S, ATM, GSN, RSN | ν e, ν μ, ν τ |
ν e + e− → ν e + e− |
ES | Water (440 kt H2O) | Cherenkov | Henderson Mine, Colorado | abandoned | [65] |
^[a] Accelerator neutrino (AC), Active galactic nuclei neutrino (AGN), Atmospheric neutrino (ATM), Collider neutrino (C), Cosmic ray neutrino (CR), Low-energy solar neutrino (LS), Low-energy supernova neutrino (LSN), Pulsar neutrino (PUL), Reactor neutrino (R), Solar neutrino (S), Supernova neutrino (SN), Terrestrial neutrino (T).
^[b] Double beta decay (BB), Charged current (CC), Elastic scattering (ES), Neutral current (NC).
See also
editThis section needs expansion. You can help by adding to it. (December 2009) |
References
edit- ^ Wildner, E.; Baussan, E.; Blennow, M.; Bogomilov, M.; Burgman, A.; Bouquerel, E.; Carlile, C.; Cederkäll, J.; Christiansen, P.; Cupial, P.; Danared, H. (2016). "The Opportunity Offered by the ESSnuSB Project to Exploit the Larger Leptonic CP Violation Signal at the Second Oscillation Maximum and the Requirements of This Project on the ESS Accelerator Complex". Advances in High Energy Physics. 2016: 1–16. arXiv:1510.00493. doi:10.1155/2016/8640493. ISSN 1687-7357.
- ^ Dracos, Marcos (September 2018). "The European Spallation Source neutrino Super Beam". Journal of Physics: Conference Series. 1067: 042001. arXiv:1803.10948. doi:10.1088/1742-6596/1067/4/042001. ISSN 1742-6588. S2CID 4938289.
External links
edit- "Experiments". Neutrino Unbound. Istituto Nazionale di Fisica Nucleare. 24 February 2017. Retrieved 2017-02-28. Regularly updated index of neutrino physics research.