Order-8 pentagonal tiling

Order-8 pentagonal tiling
Order-8 pentagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic regular tiling
Vertex configuration 58
Schläfli symbol {5,8}
Wythoff symbol 8 h 5 2
Coxeter diagram
Symmetry group [8,5], (*852)
Dual Order-5 octagonal tiling
Properties Vertex-transitive, edge-transitive, face-transitive

In geometry, the order-8 pentagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {5,8}.

edit
Regular tilings: {n,8}
Spherical Hyperbolic tilings
 
{2,8}
     
 
{3,8}
     
 
{4,8}
     
 
{5,8}
     
 
{6,8}
     
 
{7,8}
     
 
{8,8}
     
...  
{∞,8}
     

This tiling is topologically related as a part of sequence of regular polyhedra and tilings with vertex figure (5n).

Finite Compact hyperbolic Paracompact
 
{5,3}
     
 
{5,4}
     
 
{5,5}
     
 
{5,6}
     
 
{5,7}
     
 
{5,8}...
     
 
{5,∞}
     

See also

edit

References

edit
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
edit