Wheat germ agglutinin (WGA) is a lectin that protects wheat (Triticum) from insects, yeast and bacteria. An agglutinin protein, it binds to N-acetyl-D-glucosamine and sialic acid.[1] WGA has also been shown to interact with sialic acid residues on oligosaccharides.[2] Succinylated WGA is selective for β-N-acetylglucosamine (β-GlcNAc), making it a useful tool for detecting O-GlcNAc. WGA is composed of a mixture of three isoforms (WGA1, WGA2, WGA3), which are quite similar to each other and each contain an unusually high amount of glycine.[3][4] These three isoforms vary at a total of 10 amino acid positions and all have dimeric structures with four domains per monomer.[3] Each domain (WGA.A, WGA.B, WGA.C, WGA.D) is hevein-like and is stabilized by a disulfide bond.[5] N-acetyl-D-glucosamine in the natural environment of wheat is found in the chitin of insects, and the cell membrane of yeast & bacteria. WGA is found abundantly—but not exclusively—in the wheat kernel, where it got the 'germ' name from. In mammals the N-acetyl-D-glucosamine that WGA binds to is found in cartilage[6] and cornea[7] among other places. In those animals sialic acid is found in mucous membranes, e.g. the lining of the inner nose, and digestive tract.
Agglutinin isolectin 1 | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Organism | |||||||
Symbol | WGA1 | ||||||
PDB | 2uvo | ||||||
UniProt | P10968 | ||||||
|
In solution, WGA exists mostly as a heterodimer of 38,000 daltons. It is cationic at physiological pH. It contains a Carbohydrate-binding module called CBM18.
Use in molecular biology
editWGA is also widely used in biological research, particularly in the field of glycobiology.[5] Since WGA binds to glycoconjugates, it can be used to label cell membranes,[8] fibrotic scar tissue[9] and arbuscular mycorrhizae[10] for imaging and analysis. WGA is fairly stable in acidic solutions, and can be resistant to proteolysis.[11] WGA has also demonstrated some cytotoxicity and has thus been used in recent research involving hematological cancers, particularly acute myeloid leukemia.[2] In addition, WGA has been thought to improve drug delivery due to its ability to cross the blood-brain barrier, but research has yet to be performed on this hypothesis.[5]
See also
edit- Proteopedia: 2uvo – High resolution crystal structure of Wheat Germ Agglutinin in complex with N-acetyl-D-glucosamine
- Proteopedia: 2uwg – Crystal structure of Wheat Germ Agglutinin isolectin 1 in complex with glycosylurethan
References
edit- ^ Monsigny M, Roche AC, Sene C, Maget-Dana R, Delmotte F (February 1980). "Sugar-lectin interactions: how does wheat-germ agglutinin bind sialoglycoconjugates?". European Journal of Biochemistry. 104 (1): 147–53. doi:10.1111/j.1432-1033.1980.tb04410.x. PMID 6892800.
- ^ a b Ryva, Bradley; Zhang, Keman; Asthana, Abhishek; Wong, Derek; Vicioso, Yorleny; Parameswaran, Reshmi (2019). "Wheat Germ Agglutinin as a Potential Therapeutic Agent for Leukemia". Frontiers in Oncology. 9: 100. doi:10.3389/fonc.2019.00100. ISSN 2234-943X. PMC 6393371. PMID 30847305.
- ^ a b Balčiūnaitė-Murzienė, Gabrielė; Dzikaras, Mindaugas (January 2021). "Wheat Germ Agglutinin—From Toxicity to Biomedical Applications". Applied Sciences. 11 (2): 884. doi:10.3390/app11020884. ISSN 2076-3417.
- ^ Allen, A. K.; Neuberger, A.; Sharon, N. (1973-01-01). "The purification, composition and specificity of wheat-germ agglutinin". Biochemical Journal. 131 (1): 155–162. doi:10.1042/bj1310155. ISSN 0264-6021. PMC 1177449. PMID 4737292.
- ^ a b c Leyva, Eduardo; Medrano-Cerano, Jorge L.; Cano-Sánchez, Patricia; López-González, Itzel; Gómez-Velasco, Homero; del Río-Portilla, Federico; García-Hernández, Enrique (January 2019). "Bacterial expression, purification and biophysical characterization of wheat germ agglutinin and its four hevein-like domains". Biopolymers. 110 (1): e23242. doi:10.1002/bip.23242. ISSN 0006-3525. PMID 30485415.
- ^ Ohno J, Tajima Y, Utsumi N (October 1986). "Binding of wheat germ agglutinin in the matrix of rat tracheal cartilage". The Histochemical Journal. 18 (10): 537–40. doi:10.1007/BF01675194. PMID 3804790. S2CID 25384990.
- ^ Marfurt CF (February 1988). "Sympathetic innervation of the rat cornea as demonstrated by the retrograde and anterograde transport of horseradish peroxidase-wheat germ agglutinin". The Journal of Comparative Neurology. 268 (2): 147–60. doi:10.1002/cne.902680202. PMID 3360982. S2CID 23955233.
- ^ "Plasma Membrane - US". www.thermofisher.com. Retrieved 2020-01-13.
- ^ Emde B, Heinen A, Gödecke A, Bottermann K (December 2014). "Wheat germ agglutinin staining as a suitable method for detection and quantification of fibrosis in cardiac tissue after myocardial infarction". European Journal of Histochemistry. 58 (4): 2448. doi:10.4081/ejh.2014.2448. PMC 4289847. PMID 25578975.
- ^ Carotenuto, Gennaro; Genre, Andrea (2020). "Fluorescent Staining of Arbuscular Mycorrhizal Structures Using Wheat Germ Agglutinin (WGA) and Propidium Iodide". Arbuscular Mycorrhizal Fungi. Methods in Molecular Biology. Vol. 2146. pp. 53–59. doi:10.1007/978-1-0716-0603-2_5. hdl:2318/1740844. ISBN 978-1-0716-0602-5. PMID 32415595.
- ^ Pellegrina, Chiara Dalla; Perbellini, Omar; Scupoli, Maria Teresa; Tomelleri, Carlo; Zanetti, Chiara; Zoccatelli, Gianni; Fusi, Marina; Peruffo, Angelo; Rizzi, Corrado; Chignola, Roberto (2009-06-01). "Effects of wheat germ agglutinin on human gastrointestinal epithelium: Insights from an experimental model of immune/epithelial cell interaction". Toxicology and Applied Pharmacology. 237 (2): 146–153. doi:10.1016/j.taap.2009.03.012. ISSN 0041-008X. PMID 19332085.