6-cube

Cantellated 6-cube

Bicantellated 6-cube

6-orthoplex

Cantellated 6-orthoplex

Bicantellated 6-orthoplex

Cantitruncated 6-cube

Bicantitruncated 6-cube

Bicantitruncated 6-orthoplex

Cantitruncated 6-orthoplex
Orthogonal projections in B6 Coxeter plane

In six-dimensional geometry, a cantellated 6-cube is a convex uniform 6-polytope, being a cantellation of the regular 6-cube.

There are 8 cantellations for the 6-cube, including truncations. Half of them are more easily constructed from the dual 5-orthoplex.

Cantellated 6-cube

edit
Cantellated 6-cube
Type uniform 6-polytope
Schläfli symbol rr{4,3,3,3,3}
or  
Coxeter-Dynkin diagrams            
         
5-faces
4-faces
Cells
Faces
Edges 4800
Vertices 960
Vertex figure
Coxeter groups B6, [3,3,3,3,4]
Properties convex

Alternate names

edit
  • Cantellated hexeract
  • Small rhombated hexeract (acronym: srox) (Jonathan Bowers)[1]

Images

edit
orthographic projections
Coxeter plane B6 B5 B4
Graph      
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph    
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph    
Dihedral symmetry [6] [4]

Bicantellated 6-cube

edit
Cantellated 6-cube
Type uniform 6-polytope
Schläfli symbol 2rr{4,3,3,3,3}
or  
Coxeter-Dynkin diagrams            
       
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groups B6, [3,3,3,3,4]
Properties convex

Alternate names

edit
  • Bicantellated hexeract
  • Small birhombated hexeract (acronym: saborx) (Jonathan Bowers)[2]

Images

edit
orthographic projections
Coxeter plane B6 B5 B4
Graph      
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph    
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph    
Dihedral symmetry [6] [4]

Cantitruncated 6-cube

edit
Cantellated 6-cube
Type uniform 6-polytope
Schläfli symbol tr{4,3,3,3,3}
or  
Coxeter-Dynkin diagrams            
         
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groups B6, [3,3,3,3,4]
Properties convex

Alternate names

edit
  • Cantitruncated hexeract
  • Great rhombihexeract (acronym: grox) (Jonathan Bowers)[3]

Images

edit
orthographic projections
Coxeter plane B6 B5 B4
Graph      
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph    
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph    
Dihedral symmetry [6] [4]

It is fourth in a series of cantitruncated hypercubes:

Petrie polygon projections
                 
Truncated cuboctahedron Cantitruncated tesseract Cantitruncated 5-cube Cantitruncated 6-cube Cantitruncated 7-cube Cantitruncated 8-cube
                                                                 

Bicantitruncated 6-cube

edit
Cantellated 6-cube
Type uniform 6-polytope
Schläfli symbol 2tr{4,3,3,3,3}
or  
Coxeter-Dynkin diagrams            
       
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groups B6, [3,3,3,3,4]
Properties convex

Alternate names

edit
  • Bicantitruncated hexeract
  • Great birhombihexeract (acronym: gaborx) (Jonathan Bowers)[4]

Images

edit
orthographic projections
Coxeter plane B6 B5 B4
Graph      
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph    
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph    
Dihedral symmetry [6] [4]
edit

These polytopes are part of a set of 63 uniform 6-polytopes generated from the B6 Coxeter plane, including the regular 6-cube or 6-orthoplex.

B6 polytopes
 
β6
 
t1β6
 
t2β6
 
t2γ6
 
t1γ6
 
γ6
 
t0,1β6
 
t0,2β6
 
t1,2β6
 
t0,3β6
 
t1,3β6
 
t2,3γ6
 
t0,4β6
 
t1,4γ6
 
t1,3γ6
 
t1,2γ6
 
t0,5γ6
 
t0,4γ6
 
t0,3γ6
 
t0,2γ6
 
t0,1γ6
 
t0,1,2β6
 
t0,1,3β6
 
t0,2,3β6
 
t1,2,3β6
 
t0,1,4β6
 
t0,2,4β6
 
t1,2,4β6
 
t0,3,4β6
 
t1,2,4γ6
 
t1,2,3γ6
 
t0,1,5β6
 
t0,2,5β6
 
t0,3,4γ6
 
t0,2,5γ6
 
t0,2,4γ6
 
t0,2,3γ6
 
t0,1,5γ6
 
t0,1,4γ6
 
t0,1,3γ6
 
t0,1,2γ6
 
t0,1,2,3β6
 
t0,1,2,4β6
 
t0,1,3,4β6
 
t0,2,3,4β6
 
t1,2,3,4γ6
 
t0,1,2,5β6
 
t0,1,3,5β6
 
t0,2,3,5γ6
 
t0,2,3,4γ6
 
t0,1,4,5γ6
 
t0,1,3,5γ6
 
t0,1,3,4γ6
 
t0,1,2,5γ6
 
t0,1,2,4γ6
 
t0,1,2,3γ6
 
t0,1,2,3,4β6
 
t0,1,2,3,5β6
 
t0,1,2,4,5β6
 
t0,1,2,4,5γ6
 
t0,1,2,3,5γ6
 
t0,1,2,3,4γ6
 
t0,1,2,3,4,5γ6

Notes

edit
  1. ^ Klitzing, (o3o3o3x3o4x - srox)
  2. ^ Klitzing, (o3o3x3o3x4o - saborx)
  3. ^ Klitzing, (o3o3o3x3x4x - grox)
  4. ^ Klitzing, (o3o3x3x3x4o - gaborx)

References

edit
  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Klitzing, Richard. "6D uniform polytopes (polypeta)". o3o3o3x3o4x - srox, o3o3x3o3x4o - saborx, o3o3o3x3x4x - grox, o3o3x3x3x4o - gaborx
edit
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds