The Guaduas Formation (Spanish: Formación Guaduas, K2P1G, K2E1G, KPgg, KTg, TKg, Ktg) is a geological formation of the Middle Magdalena Basin and the Altiplano Cundiboyacense, Eastern Ranges of the Colombian Andes. The predominantly shale with coalbed formation dates to the Late Cretaceous and Paleogene periods; Maastrichtian-Paleocene epochs, and has a maximum thickness of 1,090 metres (3,580 ft). Fossils of Coussapoa camargoi, Ficus andrewsi, Berhamniphyllum sp. and Archaeopaliurus boyacensis have been found in coalbeds in Zipaquirá and Tasco, Boyacá.

Guaduas Formation
Stratigraphic range: Maastrichtian-Paleocene
~68–60 Ma
Coal from the Guaduas Formation, Páramo de Ocetá
TypeGeological formation
UnderliesCacho Formation
OverliesGuadalupe Gp.
 Arenisca Labor-Tierna Fm.
Thicknessup to 1,090 metres (3,580 ft)
Lithology
PrimaryShale
OtherSandstone, coal
Location
Coordinates5°05′N 74°36′W / 5.083°N 74.600°W / 5.083; -74.600
RegionMiddle Magdalena Basin
Magdalena River Valley
Altiplano Cundiboyacense
Eastern Ranges, Andes
Country Colombia
Type section
Named forGuaduas
Named byHubach
LocationGuaduas
Year defined1931
Coordinates5°05′N 74°36′W / 5.083°N 74.600°W / 5.083; -74.600
Approximate paleocoordinates0°36′N 52°30′W / 0.6°N 52.5°W / 0.6; -52.5
RegionCundinamarca, Boyacá
Country Colombia

Paleogeography of Northern South America
65 Ma, by Ron Blakey

Etymology

edit

The formation was first described by Hettner in 1894 and named in 1931 by Hubach after Guaduas, Cundinamarca, former northern territory of the Panche.[1]

Description

edit

Lithologies

edit

The Guaduas Formation consists mainly of shales with intercalated sandstone beds. The formation contains coalbeds that are widely explored in the area.[2] Fossil remains of Coussapoa camargoi, Ficus andrewsi, Berhamniphyllum sp. and Archaeopaliurus boyacensis have been found in coalbeds in Zipaquirá and Tasco, Boyacá.[3][4][5]

Stratigraphy and depositional environment

edit

The Guaduas Formation unconformably[6] overlies the Arenisca Labor-Tierna Formation of the Guadalupe Group and is overlain by the Cacho Formation. The age has been estimated to be Upper Maastrichtian-Lower Paleocene, spanning the K-T boundary.[7] The Guaduas Formation is thicker in Cundinamarca than in Boyacá. This has been explained by a decrease in subsidence and a higher amount of erosion in the northern area of original deposition.[8] The lateral thickness variations are thought to be the result of the movement of the Soapaga Fault.[9] The formation has been deposited in a coastal plain setting.[4]

Outcrops

edit
 
 
Type locality of the Guaduas Formation to the west of the Altiplano Cundiboyacense

The Guaduas Formation is apart from its type locality, found in the Eastern Hills of Bogotá, the Ocetá Páramo and many other locations in the Eastern Ranges, such as Granada,[10] the Dintel Synclinal north of Facatativá,[11] the Suesca Synclinal,[12] east of Junín,[13] and surrounding Lake Tota.[14] The northeast-southwest Canocas Fault crosscuts the Guaduas Formation near San Cayetano.[15] The synclinals of the Río Frío, Neusa, Zipaquirá, Checua-Lenguazaque, Sesquilé, Sisga, Subachoque, Teusacá and Usme and Soacha are composed of the Guaduas Formation.[2] The Suba Hills are entirely composed of the Guaduas Formation.[16] The formation also has outcrops in the Sumapaz Páramo.[17]

Regional correlations

edit


Stratigraphy of the Llanos Basin and surrounding provinces
Ma Age Paleomap Regional events Catatumbo Cordillera proximal Llanos distal Llanos Putumayo VSM Environments Maximum thickness Petroleum geology Notes
0.01 Holocene
 
Holocene volcanism
Seismic activity
alluvium Overburden
1 Pleistocene
 
Pleistocene volcanism
Andean orogeny 3
Glaciations
Guayabo Soatá
Sabana
Necesidad Guayabo Gigante
Alluvial to fluvial (Guayabo) 550 m (1,800 ft)
(Guayabo)
[18][19][20][21]
2.6 Pliocene
 
Pliocene volcanism
Andean orogeny 3
GABI
Subachoque
5.3 Messinian Andean orogeny 3
Foreland
Marichuela Caimán Honda [20][22]
13.5 Langhian Regional flooding León hiatus Caja León Lacustrine (León) 400 m (1,300 ft)
(León)
Seal [21][23]
16.2 Burdigalian Miocene inundations
Andean orogeny 2
C1 Carbonera C1 Ospina Proximal fluvio-deltaic (C1) 850 m (2,790 ft)
(Carbonera)
Reservoir [22][21]
17.3 C2 Carbonera C2 Distal lacustrine-deltaic (C2) Seal
19 C3 Carbonera C3 Proximal fluvio-deltaic (C3) Reservoir
21 Early Miocene Pebas wetlands C4 Carbonera C4 Barzalosa Distal fluvio-deltaic (C4) Seal
23 Late Oligocene
 
Andean orogeny 1
Foredeep
C5 Carbonera C5 Orito Proximal fluvio-deltaic (C5) Reservoir [19][22]
25 C6 Carbonera C6 Distal fluvio-lacustrine (C6) Seal
28 Early Oligocene C7 C7 Pepino Gualanday Proximal deltaic-marine (C7) Reservoir [19][22][24]
32 Oligo-Eocene C8 Usme C8 onlap Marine-deltaic (C8) Seal
Source
[24]
35 Late Eocene
 
Mirador Mirador Coastal (Mirador) 240 m (790 ft)
(Mirador)
Reservoir [21][25]
40 Middle Eocene Regadera hiatus
45
50 Early Eocene
 
Socha Los Cuervos Deltaic (Los Cuervos) 260 m (850 ft)
(Los Cuervos)
Seal
Source
[21][25]
55 Late Paleocene PETM
2000 ppm CO2
Los Cuervos Bogotá Gualanday
60 Early Paleocene SALMA Barco Guaduas Barco Rumiyaco Fluvial (Barco) 225 m (738 ft)
(Barco)
Reservoir [18][19][22][21][26]
65 Maastrichtian
 
KT extinction Catatumbo Guadalupe Monserrate Deltaic-fluvial (Guadalupe) 750 m (2,460 ft)
(Guadalupe)
Reservoir [18][21]
72 Campanian End of rifting Colón-Mito Juan [21][27]
83 Santonian Villeta/Güagüaquí
86 Coniacian
89 Turonian Cenomanian-Turonian anoxic event La Luna Chipaque Gachetá hiatus Restricted marine (all) 500 m (1,600 ft)
(Gachetá)
Source [18][21][28]
93 Cenomanian
 
Rift 2
100 Albian Une Une Caballos Deltaic (Une) 500 m (1,600 ft)
(Une)
Reservoir [22][28]
113 Aptian
 
Capacho Fómeque Motema Yaví Open marine (Fómeque) 800 m (2,600 ft)
(Fómeque)
Source (Fóm) [19][21][29]
125 Barremian High biodiversity Aguardiente Paja Shallow to open marine (Paja) 940 m (3,080 ft)
(Paja)
Reservoir [18]
129 Hauterivian
 
Rift 1 Tibú-
Mercedes
Las Juntas hiatus Deltaic (Las Juntas) 910 m (2,990 ft)
(Las Juntas)
Reservoir (LJun) [18]
133 Valanginian Río Negro Cáqueza
Macanal
Rosablanca
Restricted marine (Macanal) 2,935 m (9,629 ft)
(Macanal)
Source (Mac) [19][30]
140 Berriasian Girón
145 Tithonian Break-up of Pangea Jordán Arcabuco Buenavista
Saldaña Alluvial, fluvial (Buenavista) 110 m (360 ft)
(Buenavista)
"Jurassic" [22][31]
150 Early-Mid Jurassic
 
Passive margin 2 La Quinta
Noreán
hiatus Coastal tuff (La Quinta) 100 m (330 ft)
(La Quinta)
[32]
201 Late Triassic
 
Mucuchachi Payandé [22]
235 Early Triassic
 
Pangea hiatus "Paleozoic"
250 Permian
 
300 Late Carboniferous
 
Famatinian orogeny Cerro Neiva
()
[33]
340 Early Carboniferous Fossil fish
Romer's gap
Cuche
(355-385)
Farallones
()
Deltaic, estuarine (Cuche) 900 m (3,000 ft)
(Cuche)
360 Late Devonian
 
Passive margin 1 Río Cachirí
(360-419)
Ambicá
()
Alluvial-fluvial-reef (Farallones) 2,400 m (7,900 ft)
(Farallones)
[30][34][35][36][37]
390 Early Devonian
 
High biodiversity Floresta
(387-400)
Shallow marine (Floresta) 600 m (2,000 ft)
(Floresta)
410 Late Silurian Silurian mystery
425 Early Silurian hiatus
440 Late Ordovician
 
Rich fauna in Bolivia San Pedro
(450-490)
Duda
()
470 Early Ordovician First fossils Busbanzá
(>470±22)
Guape
()
Río Nevado
()
[38][39][40]
488 Late Cambrian
 
Regional intrusions Chicamocha
(490-515)
Quetame
()
Ariarí
()
SJ del Guaviare
(490-590)
San Isidro
()
[41][42]
515 Early Cambrian Cambrian explosion [40][43]
542 Ediacaran
 
Break-up of Rodinia pre-Quetame post-Parguaza El Barro
()
Yellow: allochthonous basement
(Chibcha Terrane)
Green: autochthonous basement
(Río Negro-Juruena Province)
Basement [44][45]
600 Neoproterozoic Cariri Velhos orogeny Bucaramanga
(600-1400)
pre-Guaviare [41]
800
 
Snowball Earth [46]
1000 Mesoproterozoic
 
Sunsás orogeny Ariarí
(1000)
La Urraca
(1030-1100)
[47][48][49][50]
1300 Rondônia-Juruá orogeny pre-Ariarí Parguaza
(1300-1400)
Garzón
(1180-1550)
[51]
1400
 
pre-Bucaramanga [52]
1600 Paleoproterozoic Maimachi
(1500-1700)
pre-Garzón [53]
1800
 
Tapajós orogeny Mitú
(1800)
[51][53]
1950 Transamazonic orogeny pre-Mitú [51]
2200 Columbia
2530 Archean
 
Carajas-Imataca orogeny [51]
3100 Kenorland
Sources
Legend
  • group
  • important formation
  • fossiliferous formation
  • minor formation
  • (age in Ma)
  • proximal Llanos (Medina)[note 1]
  • distal Llanos (Saltarin 1A well)[note 2]


edit

See also

edit
  Geology of the Eastern Hills
  Geology of the Ocetá Páramo
  Geology of the Altiplano Cundiboyacense

Notes and references

edit

Notes

edit
  1. ^ based on Duarte et al. (2019)[54], García González et al. (2009),[55] and geological report of Villavicencio[56]
  2. ^ based on Duarte et al. (2019)[54] and the hydrocarbon potential evaluation performed by the UIS and ANH in 2009[57]

References

edit
  1. ^ Montoya & Reyes, 2005, p.51
  2. ^ a b Montoya & Reyes, 2005, p.52
  3. ^ Coussapoa camargoi, Ficus andrewsi at fossilworks.org
  4. ^ a b Berhamniphyllum sp. & Archaeopaliurus boyacensis at fossilworks.org
  5. ^ 'Archaeopaliurus boyacensis' in the Paleobiology Database
  6. ^ Villamil, 2012, p.208
  7. ^ Montoya & Reyes, 2005, p.54
  8. ^ Mariño & Amaya, 2016, p.B9
  9. ^ Amaya et al., 2010
  10. ^ Plancha 246, 1998
  11. ^ Plancha 227, 1998
  12. ^ Plancha 190, 2009
  13. ^ Plancha 191, 1998
  14. ^ Plancha 192, 1998
  15. ^ Planchas 171 & 191
  16. ^ Geological Map Bogotá, 1997
  17. ^ (in Spanish) Geología y geomorfología - Salida de Campo: Región Llanos Orientales
  18. ^ a b c d e f García González et al., 2009, p.27
  19. ^ a b c d e f García González et al., 2009, p.50
  20. ^ a b García González et al., 2009, p.85
  21. ^ a b c d e f g h i j Barrero et al., 2007, p.60
  22. ^ a b c d e f g h Barrero et al., 2007, p.58
  23. ^ Plancha 111, 2001, p.29
  24. ^ a b Plancha 177, 2015, p.39
  25. ^ a b Plancha 111, 2001, p.26
  26. ^ Plancha 111, 2001, p.24
  27. ^ Plancha 111, 2001, p.23
  28. ^ a b Pulido & Gómez, 2001, p.32
  29. ^ Pulido & Gómez, 2001, p.30
  30. ^ a b Pulido & Gómez, 2001, pp.21-26
  31. ^ Pulido & Gómez, 2001, p.28
  32. ^ Correa Martínez et al., 2019, p.49
  33. ^ Plancha 303, 2002, p.27
  34. ^ Terraza et al., 2008, p.22
  35. ^ Plancha 229, 2015, pp.46-55
  36. ^ Plancha 303, 2002, p.26
  37. ^ Moreno Sánchez et al., 2009, p.53
  38. ^ Mantilla Figueroa et al., 2015, p.43
  39. ^ Manosalva Sánchez et al., 2017, p.84
  40. ^ a b Plancha 303, 2002, p.24
  41. ^ a b Mantilla Figueroa et al., 2015, p.42
  42. ^ Arango Mejía et al., 2012, p.25
  43. ^ Plancha 350, 2011, p.49
  44. ^ Pulido & Gómez, 2001, pp.17-21
  45. ^ Plancha 111, 2001, p.13
  46. ^ Plancha 303, 2002, p.23
  47. ^ Plancha 348, 2015, p.38
  48. ^ Planchas 367-414, 2003, p.35
  49. ^ Toro Toro et al., 2014, p.22
  50. ^ Plancha 303, 2002, p.21
  51. ^ a b c d Bonilla et al., 2016, p.19
  52. ^ Gómez Tapias et al., 2015, p.209
  53. ^ a b Bonilla et al., 2016, p.22
  54. ^ a b Duarte et al., 2019
  55. ^ García González et al., 2009
  56. ^ Pulido & Gómez, 2001
  57. ^ García González et al., 2009, p.60

Bibliography

edit
  • Amaya, Erika; Mariño, Jorge; Jaramillo, Carlos (2010), "Litofacies y ambientes de acumulación de la Formación Guaduas en al parte central de la Cordillera Oriental - implicaciones paleogeográficas", Boletín de Geología, Universidad Industrial de Santander, 32 (1): _, retrieved 2017-03-16
  • García González, Mario; Mier Umaña, Ricardo; Cruz Guevara, Luis Enrique; Vásquez, Mauricio (2009), Informe Ejecutivo - evaluación del potencial hidrocarburífero de las cuencas colombianas, Universidad Industrial de Santander, pp. 1–219
  • Mariño M., Jorge E; Amaya, Erika (2016), "Lithofacies cyclicity determination in the Guaduas Formation using Markov chains", Earth Sciences Research Journal, Universidad Nacional de Colombia, 20: B1-9
  • Montoya Arenas, Diana María; Reyes Torres, Germán Alfonso (2005), Geología de la Sabana de Bogotá, INGEOMINAS, pp. 1–104
  • Villamil, Tomas (2012), Chronology Relative Sea Level History and a New Sequence Stratigraphic Model for Basinal Cretaceous Facies of Colombia, Society for Sedimentary Geology (SEPM), pp. 161–216

Maps

edit
edit