This article needs additional citations for verification. (October 2018) |
The following list in mathematics contains the finite groups of small order up to group isomorphism.
Counts
editFor n = 1, 2, … the number of nonisomorphic groups of order n is
Glossary
editEach group is named by Small Groups library as Goi, where o is the order of the group, and i is the index used to label the group within that order.
Common group names:
- Zn: the cyclic group of order n (the notation Cn is also used; it is isomorphic to the additive group of Z/nZ)
- Dihn: the dihedral group of order 2n (often the notation Dn or D2n is used)
- K4: the Klein four-group of order 4, same as Z2 × Z2 and Dih2
- D2n: the dihedral group of order 2n, the same as Dihn (notation used in section List of small non-abelian groups)
- Sn: the symmetric group of degree n, containing the n! permutations of n elements
- An: the alternating group of degree n, containing the even permutations of n elements, of order 1 for n = 0, 1, and order n!/2 otherwise
- Dicn or Q4n: the dicyclic group of order 4n
- Q8: the quaternion group of order 8, also Dic2
The notations Zn and Dihn have the advantage that point groups in three dimensions Cn and Dn do not have the same notation. There are more isometry groups than these two, of the same abstract group type.
The notation G × H denotes the direct product of the two groups; Gn denotes the direct product of a group with itself n times. G ⋊ H denotes a semidirect product where H acts on G; this may also depend on the choice of action of H on G.
Abelian and simple groups are noted. (For groups of order n < 60, the simple groups are precisely the cyclic groups Zn, for prime n.) The equality sign ("=") denotes isomorphism.
The identity element in the cycle graphs is represented by the black circle. The lowest order for which the cycle graph does not uniquely represent a group is order 16.
In the lists of subgroups, the trivial group and the group itself are not listed. Where there are several isomorphic subgroups, the number of such subgroups is indicated in parentheses.
Angle brackets <relations> show the presentation of a group.
List of small abelian groups
editThe finite abelian groups are either cyclic groups, or direct products thereof; see Abelian group. The numbers of nonisomorphic abelian groups of orders n = 1, 2, ... are
For labeled abelian groups, see OEIS: A034382.
Order | Id.[a] | Goi | Group | Non-trivial proper subgroups[1] | Cycle graph |
Properties |
---|---|---|---|---|---|---|
1 | 1 | G11 | Z1 = S1 = A2 | – | Trivial. Cyclic. Alternating. Symmetric. Elementary. | |
2 | 2 | G21 | Z2 = S2 = D2 | – | Simple. Symmetric. Cyclic. Elementary. (Smallest non-trivial group.) | |
3 | 3 | G31 | Z3 = A3 | – | Simple. Alternating. Cyclic. Elementary. | |
4 | 4 | G41 | Z4 = Dic1 | Z2 | Cyclic. | |
5 | G42 | Z22 = K4 = D4 | Z2 (3) | Elementary. Product. (Klein four-group. The smallest non-cyclic group.) | ||
5 | 6 | G51 | Z5 | – | Simple. Cyclic. Elementary. | |
6 | 8 | G62 | Z6 = Z3 × Z2[2] | Z3, Z2 | Cyclic. Product. | |
7 | 9 | G71 | Z7 | – | Simple. Cyclic. Elementary. | |
8 | 10 | G81 | Z8 | Z4, Z2 | Cyclic. | |
11 | G82 | Z4 × Z2 | Z22, Z4 (2), Z2 (3) | Product. | ||
14 | G85 | Z23 | Z22 (7), Z2 (7) | Product. Elementary. (The non-identity elements correspond to the points in the Fano plane, the Z2 × Z2 subgroups to the lines.) | ||
9 | 15 | G91 | Z9 | Z3 | Cyclic. | |
16 | G92 | Z32 | Z3 (4) | Elementary. Product. | ||
10 | 18 | G102 | Z10 = Z5 × Z2 | Z5, Z2 | Cyclic. Product. | |
11 | 19 | G111 | Z11 | – | Simple. Cyclic. Elementary. | |
12 | 21 | G122 | Z12 = Z4 × Z3 | Z6, Z4, Z3, Z2 | Cyclic. Product. | |
24 | G125 | Z6 × Z2 = Z3 × Z22 | Z6 (3), Z3, Z2 (3), Z22 | Product. | ||
13 | 25 | G131 | Z13 | – | Simple. Cyclic. Elementary. | |
14 | 27 | G142 | Z14 = Z7 × Z2 | Z7, Z2 | Cyclic. Product. | |
15 | 28 | G151 | Z15 = Z5 × Z3 | Z5, Z3 | Cyclic. Product. | |
16 | 29 | G161 | Z16 | Z8, Z4, Z2 | Cyclic. | |
30 | G162 | Z42 | Z2 (3), Z4 (6), Z22, Z4 × Z2 (3) | Product. | ||
33 | G165 | Z8 × Z2 | Z2 (3), Z4 (2), Z22, Z8 (2), Z4 × Z2 | Product. | ||
38 | G1610 | Z4 × Z22 | Z2 (7), Z4 (4), Z22 (7), Z23, Z4 × Z2 (6) | Product. | ||
42 | G1614 | Z24 = K42 | Z2 (15), Z22 (35), Z23 (15) | Product. Elementary. | ||
17 | 43 | G171 | Z17 | – | Simple. Cyclic. Elementary. | |
18 | 45 | G182 | Z18 = Z9 × Z2 | Z9, Z6, Z3, Z2 | Cyclic. Product. | |
48 | G185 | Z6 × Z3 = Z32 × Z2 | Z2, Z3 (4), Z6 (4), Z32 | Product. | ||
19 | 49 | G191 | Z19 | – | Simple. Cyclic. Elementary. | |
20 | 51 | G202 | Z20 = Z5 × Z4 | Z10, Z5, Z4, Z2 | Cyclic. Product. | |
54 | G205 | Z10 × Z2 = Z5 × Z22 | Z2 (3), K4, Z5, Z10 (3) | Product. | ||
21 | 56 | G212 | Z21 = Z7 × Z3 | Z7, Z3 | Cyclic. Product. | |
22 | 58 | G222 | Z22 = Z11 × Z2 | Z11, Z2 | Cyclic. Product. | |
23 | 59 | G231 | Z23 | – | Simple. Cyclic. Elementary. | |
24 | 61 | G242 | Z24 = Z8 × Z3 | Z12, Z8, Z6, Z4, Z3, Z2 | Cyclic. Product. | |
68 | G249 | Z12 × Z2 = Z6 × Z4 = Z4 × Z3 × Z2 |
Z12, Z6, Z4, Z3, Z2 | Product. | ||
74 | G2415 | Z6 × Z22 = Z3 × Z23 | Z6, Z3, Z2 | Product. | ||
25 | 75 | G251 | Z25 | Z5 | Cyclic. | |
76 | G252 | Z52 | Z5 (6) | Product. Elementary. | ||
26 | 78 | G262 | Z26 = Z13 × Z2 | Z13, Z2 | Cyclic. Product. | |
27 | 79 | G271 | Z27 | Z9, Z3 | Cyclic. | |
80 | G272 | Z9 × Z3 | Z9, Z3 | Product. | ||
83 | G275 | Z33 | Z3 | Product. Elementary. | ||
28 | 85 | G282 | Z28 = Z7 × Z4 | Z14, Z7, Z4, Z2 | Cyclic. Product. | |
87 | G284 | Z14 × Z2 = Z7 × Z22 | Z14, Z7, Z4, Z2 | Product. | ||
29 | 88 | G291 | Z29 | – | Simple. Cyclic. Elementary. | |
30 | 92 | G304 | Z30 = Z15 × Z2 = Z10 × Z3 = Z6 × Z5 = Z5 × Z3 × Z2 |
Z15, Z10, Z6, Z5, Z3, Z2 | Cyclic. Product. | |
31 | 93 | G311 | Z31 | – | Simple. Cyclic. Elementary. |
List of small non-abelian groups
editThe numbers of non-abelian groups, by order, are counted by (sequence A060689 in the OEIS). However, many orders have no non-abelian groups. The orders for which a non-abelian group exists are
- 6, 8, 10, 12, 14, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 34, 36, 38, 39, 40, 42, 44, 46, 48, 50, ... (sequence A060652 in the OEIS)
Order | Id.[a] | Goi | Group | Non-trivial proper subgroups[1] | Cycle graph |
Properties |
---|---|---|---|---|---|---|
6 | 7 | G61 | D6 = S3 = Z3 ⋊ Z2 | Z3, Z2 (3) | Dihedral group, Dih3, the smallest non-abelian group, symmetric group, smallest Frobenius group. | |
8 | 12 | G83 | D8 | Z4, Z22 (2), Z2 (5) | Dihedral group, Dih4. Extraspecial group. Nilpotent. | |
13 | G84 | Q8 | Z4 (3), Z2 | Quaternion group, Hamiltonian group (all subgroups are normal without the group being abelian). The smallest group G demonstrating that for a normal subgroup H the quotient group G/H need not be isomorphic to a subgroup of G. Extraspecial group. Dic2,[3] Binary dihedral group <2,2,2>.[4] Nilpotent. | ||
10 | 17 | G101 | D10 | Z5, Z2 (5) | Dihedral group, Dih5, Frobenius group. | |
12 | 20 | G121 | Q12 = Z3 ⋊ Z4 | Z2, Z3, Z4 (3), Z6 | Dicyclic group Dic3, Binary dihedral group, <3,2,2>[4] | |
22 | G123 | A4 = K4 ⋊ Z3 = (Z2 × Z2) ⋊ Z3 | Z22, Z3 (4), Z2 (3) | Alternating group. No subgroups of order 6, although 6 divides its order. Smallest Frobenius group that is not a dihedral group. Chiral tetrahedral symmetry (T) | ||
23 | G124 | D12 = D6 × Z2 | Z6, D6 (2), Z22 (3), Z3, Z2 (7) | Dihedral group, Dih6, product. | ||
14 | 26 | G141 | D14 | Z7, Z2 (7) | Dihedral group, Dih7, Frobenius group | |
16[5] | 31 | G163 | G4,4 = K4 ⋊ Z4 | Z23, Z4 × Z2 (2), Z4 (4), Z22 (7), Z2 (7) | Has the same number of elements of every order as the Pauli group. Nilpotent. | |
32 | G164 | Z4 ⋊ Z4 | Z22 × Z2 (3), Z4 (6), Z22, Z2 (3) | The squares of elements do not form a subgroup. Has the same number of elements of every order as Q8 × Z2. Nilpotent. | ||
34 | G166 | Z8 ⋊ Z2 | Z8 (2), Z22 × Z2, Z4 (2), Z22, Z2 (3) | Sometimes called the modular group of order 16, though this is misleading as abelian groups and Q8 × Z2 are also modular. Nilpotent. | ||
35 | G167 | D16 | Z8, D8 (2), Z22 (4), Z4, Z2 (9) | Dihedral group, Dih8. Nilpotent. | ||
36 | G168 | QD16 | Z8, Q8, D8, Z4 (3), Z22 (2), Z2 (5) | The order 16 quasidihedral group. Nilpotent. | ||
37 | G169 | Q16 | Z8, Q8 (2), Z4 (5), Z2 | Generalized quaternion group, Dicyclic group Dic4, binary dihedral group, <4,2,2>.[4] Nilpotent. | ||
39 | G1611 | D8 × Z2 | D8 (4), Z4 × Z2, Z23 (2), Z22 (13), Z4 (2), Z2 (11) | Product. Nilpotent. | ||
40 | G1612 | Q8 × Z2 | Q8 (4), Z22 × Z2 (3), Z4 (6), Z22, Z2 (3) | Hamiltonian group, product. Nilpotent. | ||
41 | G1613 | (Z4 × Z2) ⋊ Z2 | Q8, D8 (3), Z4 × Z2 (3), Z4 (4), Z22 (3), Z2 (7) | The Pauli group generated by the Pauli matrices. Nilpotent. | ||
18 | 44 | G181 | D18 | Z9, D6 (3), Z3, Z2 (9) | Dihedral group, Dih9, Frobenius group. | |
46 | G183 | Z3 ⋊ Z6 = D6 × Z3 = S3 × Z3 | Z32, D6, Z6 (3), Z3 (4), Z2 (3) | Product. | ||
47 | G184 | (Z3 × Z3) ⋊ Z2 | Z32, D6 (12), Z3 (4), Z2 (9) | Frobenius group. | ||
20 | 50 | G201 | Q20 | Z10, Z5, Z4 (5), Z2 | Dicyclic group Dic5, Binary dihedral group, <5,2,2>.[4] | |
52 | G203 | Z5 ⋊ Z4 | D10, Z5, Z4 (5), Z2 (5) | Frobenius group. | ||
53 | G204 | D20 = D10 × Z2 | Z10, D10 (2), Z5, Z22 (5), Z2 (11) | Dihedral group, Dih10, product. | ||
21 | 55 | G211 | Z7 ⋊ Z3 | Z7, Z3 (7) | Smallest non-abelian group of odd order. Frobenius group. | |
22 | 57 | G221 | D22 | Z11, Z2 (11) | Dihedral group Dih11, Frobenius group. | |
24 | 60 | G241 | Z3 ⋊ Z8 | Z12, Z8 (3), Z6, Z4, Z3, Z2 | Central extension of S3. | |
62 | G243 | SL(2,3) = Q8 ⋊ Z3 | Q8, Z6 (4), Z4 (3), Z3 (4), Z2 | Binary tetrahedral group, 2T = <3,3,2>.[4] | ||
63 | G244 | Q24 = Z3 ⋊ Q8 | Z12, Q12 (2), Q8 (3), Z6, Z4 (7), Z3, Z2 | Dicyclic group Dic6, Binary dihedral, <6,2,2>.[4] | ||
64 | G245 | D6 × Z4 = S3 × Z4 | Z12, D12, Q12, Z4 × Z2 (3), Z6, D6 (2), Z4 (4), Z22 (3), Z3, Z2 (7) | Product. | ||
65 | G246 | D24 | Z12, D12 (2), D8 (3), Z6, D6 (4), Z4, Z22 (6), Z3, Z2 (13) | Dihedral group, Dih12. | ||
66 | G247 | Q12 × Z2 = Z2 × (Z3 ⋊ Z4) | Z6 × Z2, Q12 (2), Z4 × Z2 (3), Z6 (3), Z4 (6), Z22, Z3, Z2 (3) | Product. | ||
67 | G248 | (Z6 × Z2) ⋊ Z2 = Z3 ⋊ Dih4 | Z6 × Z2, D12, Q12, D8 (3), Z6 (3), D6 (2), Z4 (3), Z22 (4), Z3, Z2 (9) | Double cover of dihedral group. | ||
69 | G2410 | D8 × Z3 | Z12, Z6 × Z2 (2), D8, Z6 (5), Z4, Z22 (2), Z3, Z2 (5) | Product. Nilpotent. | ||
70 | G2411 | Q8 × Z3 | Z12 (3), Q8, Z6, Z4 (3), Z3, Z2 | Product. Nilpotent. | ||
71 | G2412 | S4 | A4, D8 (3), D6 (4), Z4 (3), Z22 (4), Z3 (4), Z2 (9)[6] | Symmetric group. Has no normal Sylow subgroups. Chiral octahedral symmetry (O), Achiral tetrahedral symmetry (Td) | ||
72 | G2413 | A4 × Z2 | A4, Z23, Z6 (4), Z22 (7), Z3 (4), Z2 (7) | Product. Pyritohedral symmetry (Th) | ||
73 | G2414 | D12 × Z2 | Z6 × Z2, D12 (6), Z23 (3), Z6 (3), D6 (4), Z22 (19), Z3, Z2 (15) | Product. | ||
26 | 77 | G261 | D26 | Z13, Z2 (13) | Dihedral group, Dih13, Frobenius group. | |
27 | 81 | G273 | Z32 ⋊ Z3 | Z32 (4), Z3 (13) | All non-trivial elements have order 3. Extraspecial group. Nilpotent. | |
82 | G274 | Z9 ⋊ Z3 | Z9 (3), Z32, Z3 (4) | Extraspecial group. Nilpotent. | ||
28 | 84 | G281 | Z7 ⋊ Z4 | Z14, Z7, Z4 (7), Z2 | Dicyclic group Dic7, Binary dihedral group, <7,2,2>.[4] | |
86 | G283 | D28 = D14 × Z2 | Z14, D14 (2), Z7, Z22 (7), Z2 (9) | Dihedral group, Dih14, product. | ||
30 | 89 | G301 | D6 × Z5 | Z15, Z10 (3), D6, Z5, Z3, Z2 (3) | Product. | |
90 | G302 | D10 × Z3 | Z15, D10, Z6 (5), Z5, Z3, Z2 (5) | Product. | ||
91 | G303 | D30 | Z15, D10 (3), D6 (5), Z5, Z3, Z2 (15) | Dihedral group, Dih15, Frobenius group. |
Classifying groups of small order
editSmall groups of prime power order pn are given as follows:
- Order p: The only group is cyclic.
- Order p2: There are just two groups, both abelian.
- Order p3: There are three abelian groups, and two non-abelian groups. One of the non-abelian groups is the semidirect product of a normal cyclic subgroup of order p2 by a cyclic group of order p. The other is the quaternion group for p = 2 and a group of exponent p for p > 2.
- Order p4: The classification is complicated, and gets much harder as the exponent of p increases.
Most groups of small order have a Sylow p subgroup P with a normal p-complement N for some prime p dividing the order, so can be classified in terms of the possible primes p, p-groups P, groups N, and actions of P on N. In some sense this reduces the classification of these groups to the classification of p-groups. Some of the small groups that do not have a normal p-complement include:
- Order 24: The symmetric group S4
- Order 48: The binary octahedral group and the product S4 × Z2
- Order 60: The alternating group A5.
The smallest order for which it is not known how many nonisomorphic groups there are is 2048 = 211.[7]
Small Groups Library
editThe GAP computer algebra system contains a package called the "Small Groups library," which provides access to descriptions of small order groups. The groups are listed up to isomorphism. At present, the library contains the following groups:[8]
- those of order at most 2000[9] except for order 1024 (423164062 groups in the library; the ones of order 1024 had to be skipped, as there are additional 49487367289 nonisomorphic 2-groups of order 1024[10]);
- those of cubefree order at most 50000 (395 703 groups);
- those of squarefree order;
- those of order pn for n at most 6 and p prime;
- those of order p7 for p = 3, 5, 7, 11 (907 489 groups);
- those of order pqn where qn divides 28, 36, 55 or 74 and p is an arbitrary prime which differs from q;
- those whose orders factorise into at most 3 primes (not necessarily distinct).
It contains explicit descriptions of the available groups in computer readable format.
The smallest order for which the Small Groups library does not have information is 1024.
See also
editNotes
edit- ^ a b Dockchitser, Tim. "Group Names". Retrieved 23 May 2023.
- ^ See a worked example showing the isomorphism Z6 = Z3 × Z2.
- ^ Chen, Jing; Tang, Lang (2020). "The Commuting Graphs on Dicyclic Groups". Algebra Colloquium. 27 (4): 799–806. doi:10.1142/S1005386720000668. ISSN 1005-3867. S2CID 228827501.
- ^ a b c d e f g Coxeter, H. S. M. (1957). Generators and relations for discrete groups. Berlin: Springer. doi:10.1007/978-3-662-25739-5. ISBN 978-3-662-23654-3.
<l,m,n>: Rl=Sm=Tn=RST
: - ^ Wild, Marcel (2005). "The Groups of Order Sixteen Made Easy" (PDF). Am. Math. Mon. 112 (1): 20–31. doi:10.1080/00029890.2005.11920164. JSTOR 30037381. S2CID 15362871. Archived from the original (PDF) on 2006-09-23.
- ^ "Subgroup structure of symmetric group:S4 - Groupprops".
- ^ Eick, Bettina; Horn, Max; Hulpke, Alexander (2018). Constructing groups of Small Order: Recent results and open problems (PDF). Springer. pp. 199–211. doi:10.1007/978-3-319-70566-8_8. ISBN 978-3-319-70566-8.
- ^ Hans Ulrich Besche The Small Groups library Archived 2012-03-05 at the Wayback Machine
- ^ "Numbers of isomorphism types of finite groups of given order". www.icm.tu-bs.de. Archived from the original on 2019-07-25. Retrieved 2017-04-05.
- ^ Burrell, David (2021-12-08). "On the number of groups of order 1024". Communications in Algebra. 50 (6): 2408–2410. doi:10.1080/00927872.2021.2006680.
References
edit- Coxeter, H. S. M. & Moser, W. O. J. (1980). Generators and Relations for Discrete Groups. New York: Springer-Verlag. ISBN 0-387-09212-9., Table 1, Nonabelian groups order<32.
- Hall, Jr., Marshall; Senior, James K. (1964). "The Groups of Order 2n (n ≤ 6)". MathSciNet. Macmillan. MR 0168631. A catalog of the 340 groups of order dividing 64 with tables of defining relations, constants, and lattice of subgroups of each group.
External links
edit- Particular groups in the Group Properties Wiki
- Besche, H.U.; Eick, B.; O'Brien, E. "Small Group Library". Archived from the original on 2012-03-05.
- GroupNames database
- Hall, Jr., Marshall; Senior, James Kuhn (1964). The Groups of Order 2n (n ≤ 6). New York: Macmillan / London: Collier-Macmillan Ltd. LCCN 64016861