Solar eclipse of April 21, 2069

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, April 21, 2069,[1] with a magnitude of 0.8992. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Solar eclipse of April 21, 2069
Map
Type of eclipse
NaturePartial
Gamma1.0624
Magnitude0.8992
Maximum eclipse
Coordinates71°00′N 101°18′W / 71°N 101.3°W / 71; -101.3
Times (UTC)
Greatest eclipse10:11:09
References
Saros120 (64 of 71)
Catalog # (SE5000)9663

The partial solar eclipse will be visible for parts of eastern Canada, Greenland, Europe, and North Asia.

Eclipse details

edit

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[2]

April 21, 2069 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 2069 April 21 at 08:17:35.0 UTC
Ecliptic Conjunction 2069 April 21 at 10:00:35.3 UTC
Greatest Eclipse 2069 April 21 at 10:11:08.9 UTC
Equatorial Conjunction 2069 April 21 at 10:39:45.2 UTC
Last Penumbral External Contact 2069 April 21 at 12:04:30.0 UTC
April 21, 2069 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 0.89916
Eclipse Obscuration 0.88412
Gamma 1.06241
Sun Right Ascension 01h58m57.2s
Sun Declination +12°07'52.1"
Sun Semi-Diameter 15'55.0"
Sun Equatorial Horizontal Parallax 08.8"
Moon Right Ascension 01h57m49.5s
Moon Declination +13°10'46.5"
Moon Semi-Diameter 16'43.2"
Moon Equatorial Horizontal Parallax 1°01'21.7"
ΔT 97.0 s

Eclipse season

edit

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

Eclipse season of April–May 2069
April 21
Descending node (new moon)
May 6
Ascending node (full moon)
May 20
Descending node (new moon)
     
Partial solar eclipse
Solar Saros 120
Total lunar eclipse
Lunar Saros 132
Partial solar eclipse
Solar Saros 158
edit

Eclipses in 2069

edit

Metonic

edit

Tzolkinex

edit

Half-Saros

edit

Tritos

edit

Solar Saros 120

edit

Inex

edit

Triad

edit

Solar eclipses of 2069–2072

edit

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[3]

The partial solar eclipse on May 20, 2069 occurs in the previous lunar year eclipse set.

Solar eclipse series sets from 2069 to 2072
Descending node   Ascending node
Saros Map Gamma Saros Map Gamma
120 April 21, 2069
 
Partial
1.0624 125 October 15, 2069
 
Partial
−1.2524
130 April 11, 2070
 
Total
0.3652 135 October 4, 2070
 
Annular
−0.495
140 March 31, 2071
 
Annular
−0.3739 145 September 23, 2071
 
Total
0.262
150 March 19, 2072
 
Partial
−1.1405 155 September 12, 2072
 
Total
0.9655

Saros 120

edit

This eclipse is a part of Saros series 120, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on May 27, 933 AD. It contains annular eclipses from August 11, 1059 through April 26, 1492; hybrid eclipses from May 8, 1510 through June 8, 1564; and total eclipses from June 20, 1582 through March 30, 2033. The series ends at member 71 as a partial eclipse on July 7, 2195. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 11 at 6 minutes, 24 seconds on September 11, 1113, and the longest duration of totality was produced by member 60 at 2 minutes, 50 seconds on March 9, 1997. All eclipses in this series occur at the Moon’s descending node of orbit.[4]

Series members 50–71 occur between 1801 and 2195:
50 51 52
 
November 19, 1816
 
November 30, 1834
 
December 11, 1852
53 54 55
 
December 22, 1870
 
January 1, 1889
 
January 14, 1907
56 57 58
 
January 24, 1925
 
February 4, 1943
 
February 15, 1961
59 60 61
 
February 26, 1979
 
March 9, 1997
 
March 20, 2015
62 63 64
 
March 30, 2033
 
April 11, 2051
 
April 21, 2069
65 66 67
 
May 2, 2087
 
May 14, 2105
 
May 25, 2123
68 69 70
 
June 4, 2141
 
June 16, 2159
 
June 26, 2177
71
 
July 7, 2195

Metonic series

edit

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between July 3, 2065 and November 26, 2152
July 3–4 April 21–23 February 7–8 November 26–27 September 13–15
118 120 122 124 126
 
July 3, 2065
 
April 21, 2069
 
February 7, 2073
 
November 26, 2076
 
September 13, 2080
128 130 132 134 136
 
July 3, 2084
 
April 21, 2088
 
February 7, 2092
 
November 27, 2095
 
September 14, 2099
138 140 142 144 146
 
July 4, 2103
 
April 23, 2107
 
February 8, 2111
 
November 27, 2114
 
September 15, 2118
148 150 152 154 156
 
July 4, 2122
 
April 22, 2126
 
February 8, 2130
 
November 26, 2133
 
September 15, 2137
158 160 162 164
 
July 3, 2141
 
November 26, 2152

Tritos series

edit

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 2036 and 2200
 
July 23, 2036
(Saros 117)
 
June 23, 2047
(Saros 118)
 
May 22, 2058
(Saros 119)
 
April 21, 2069
(Saros 120)
 
March 21, 2080
(Saros 121)
 
February 18, 2091
(Saros 122)
 
January 19, 2102
(Saros 123)
 
December 19, 2112
(Saros 124)
 
November 18, 2123
(Saros 125)
 
October 17, 2134
(Saros 126)
 
September 16, 2145
(Saros 127)
 
August 16, 2156
(Saros 128)
 
July 16, 2167
(Saros 129)
 
June 16, 2178
(Saros 130)
 
May 15, 2189
(Saros 131)
 
April 14, 2200
(Saros 132)

Inex series

edit

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
 
October 19, 1808
(Saros 111)
 
August 20, 1895
(Saros 114)
 
July 31, 1924
(Saros 115)
 
July 11, 1953
(Saros 116)
 
June 21, 1982
(Saros 117)
 
June 1, 2011
(Saros 118)
 
May 11, 2040
(Saros 119)
 
April 21, 2069
(Saros 120)
 
April 1, 2098
(Saros 121)
 
March 13, 2127
(Saros 122)
 
February 21, 2156
(Saros 123)
 
January 31, 2185
(Saros 124)

References

edit
  1. ^ "April 21, 2069 Partial Solar Eclipse". timeanddate. Retrieved 20 August 2024.
  2. ^ "Partial Solar Eclipse of 2069 Apr 21". EclipseWise.com. Retrieved 20 August 2024.
  3. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. ^ "NASA - Catalog of Solar Eclipses of Saros 120". eclipse.gsfc.nasa.gov.
edit