In plasma physics, a Taylor state is the minimum energy state of a plasma while the plasma is conserving magnetic flux.[1] This was first proposed by John Bryan Taylor in 1974 and he backed up this claim using data from the ZETA machine.[2]
Taylor-States are critical to operating both the Dynomak and the reversed field pinch - both run in a Taylor State.
Examples
editIn 1974, Dr. John B Taylor proposed that a spheromak could be formed by inducing a magnetic flux into a loop plasma. The plasma would then relax naturally into a spheromak also known as a Taylor State.[3][4] This process worked if the plasma:
- Conserved the total magnetic flux
- Minimized the total energy
These claims were later checked by Marshall Rosenbluth in 1979.[5] In 1974, Dr. Taylor could only use results from the ZETA pinch device to back up these claims. But, since then, Taylor states have been formed in multiple machines including:
- Compact Torus Experiment (CTX) at Los Alamos. The CTX operated from ~1979 to ~1987 at Los Alamos. It reached electron temperatures of 4.6 million kelvin [6] ran for 3 microseconds [7] and had a plasma to magnetic pressure ratio of 0.2.[8]
- Sustained Spheromak Physics Experiment (SSPX) at Livermore was a more advanced version of the CTX that was used to measure the relaxation process that led to a Taylor state. The SSPX was working at Livermore from 1999 until 2007.[9]
- Caltech Spheromak Experiment at Caltech was a small experiment run by Dr. Paul Bellans’ lab at Caltech from ~2000 to ~2010.
- Helicity Injected Torus-Steady Inductive (HIT-SI) at the University of Washington was run by Dr. Jarboe from 2004 to 2012 and was the precursor to the Dynomak. This machine created 90 kiloamps of stable plasma current over several (<2) microseconds.[10] This machine also showed the first demonstration of Imposed-Dynamo Current Drive (IDCD) in 2011.[11] The IDCD breakthrough enabled Dr. Jarboes’ group to envision the first reactor-scale version of this machine; called the Dynomak.
Derivation
editConsider a closed, simply-connected, flux-conserving, perfectly conducting surface surrounding a plasma with negligible thermal energy ( ).
Since on . This implies that .
As discussed above, the plasma would relax towards a minimum energy state while conserving its magnetic helicity. Since the boundary is perfectly conducting, there cannot be any change in the associated flux. This implies and on .
We formulate a variational problem of minimizing the plasma energy while conserving magnetic helicity .
The variational problem is .
After some algebra this leads to the following constraint for the minimum energy state .
References
edit- ^ Paul M. Bellan (2000). Spheromaks: A Practical Application of Magnetohydrodynamic dynamos and plasma self-organization. Imperial College Press. pp. 71–79. ISBN 978-1-86094-141-2.
- ^ Taylor, J. Brian. "Relaxation of toroidal plasma and generation of reverse magnetic fields." Physical Review Letters 33.19 (1974): 1139.
- ^ Bellan, Paul (2000). Spheromaks. Imperial College Press. ISBN 978-1-86094-141-2.
- ^ Taylor, J. Brian. "Relaxation of toroidal plasma and generation of reverse magnetic fields." Physical Review Letters 33.19 (1974): 1139.
- ^ Rosenbluth, M. N., and M. N. Bussac. "MHD stability of spheromak." Nuclear Fusion 19.4 (1979): 489
- ^ JARBOE, T. R., WYSOCKI, F.J., FERNÁNDEZ, J.C., HENINS, I., MARKLIN, G.J., Phys. Fluids B 2 (1990) 1342-1346
- ^ "Physics through the 1990s", National Academies Press, 1986, p. 198.
- ^ WYSOCKI, F.J., FERNÁNDEZ, J.C., HENINS, I., JARBOE, T.R., MARKLIN, G.J., Phys. Rev. Letters 21 (1988) 2457-2460
- ^ Wood, R. D., et al. "Particle control in the sustained spheromak physics experiment." Journal of nuclear materials 290 (2001): 513-517.
- ^ Sieck, P. E., et al. "First Plasma Results from the HIT-SI Spheromak." APS Division of Plasma Physics Meeting Abstracts. Vol. 45. 2003.
- ^ Sutherland, D. A., et al. "The dynomak: An advanced fusion reactor concept with imposed-dynamo current drive and next-generation nuclear power technologies."