Template:Infobox meitnerium

Meitnerium, 109Mt
Meitnerium
Pronunciation
Mass number[278] (data not decisive)[a]
Meitnerium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Ir

Mt

hassiummeitneriumdarmstadtium
Atomic number (Z)109
Groupgroup 9
Periodperiod 7
Block  d-block
Electron configuration[Rn] 5f14 6d7 7s2 (predicted)[6][7]
Electrons per shell2, 8, 18, 32, 32, 15, 2 (predicted)
Physical properties
Phase at STPsolid (predicted)[8]
Density (near r.t.)27–28 g/cm3 (predicted)[9][10]
Atomic properties
Oxidation statescommon: (none)
(+1), (+3), (+6)[6]
Ionization energies
  • 1st: 800 kJ/mol
  • 2nd: 1820 kJ/mol
  • 3rd: 2900 kJ/mol
  • (more) (all estimated)[6]
Atomic radiusempirical: 128 pm (predicted)[6][11]
Covalent radius129 pm (estimated)[12]
Other properties
Natural occurrencesynthetic
Crystal structureface-centered cubic (fcc)
Face-centered cubic crystal structure for meitnerium

(predicted)[8]
Magnetic orderingparamagnetic (predicted)[13]
CAS Number54038-01-6
History
Namingafter Lise Meitner
DiscoveryGesellschaft für Schwerionenforschung (1982)
Isotopes of meitnerium
Main isotopes[3] Decay
abun­dance half-life (t1/2) mode pro­duct
274Mt synth 0.64 s α 270Bh
276Mt synth 0.62 s α 272Bh
278Mt synth 4 s α 274Bh
282Mt synth 67 s?[5] α 278Bh
 Category: Meitnerium
| references
Mt · Meitnerium
Hs ←

ibox Hs

iso
109
Mt  [e]
IB-Mt [e]
IBisos [e]
→ Ds

ibox Ds

indexes by PT (page)
child table, as reused in {IB-Mt}
Main isotopes of meitnerium
Main isotopes[3] Decay
abun­dance half-life (t1/2) mode pro­duct
274Mt synth 0.64 s α 270Bh
276Mt synth 0.62 s α 272Bh
278Mt synth 4 s α 274Bh
282Mt synth 67 s?[5] α 278Bh
Data sets read by {{Infobox element}}
Name and identifiers
Symbol etymology (11 non-trivial)
Top image (caption, alt)
Pronunciation
Allotropes (overview)
Group (overview)
Period (overview)
Block (overview)
Natural occurrence
Phase at STP
Oxidation states
Spectral lines image
Electron configuration (cmt, ref)
Isotopes
Standard atomic weight
  most stable isotope
Wikidata
Wikidata *
* Not used in {{Infobox element}} (2023-01-01)
See also {{Index of data sets}} · Cat:data sets (46) · (this table: )

Notes

  1. ^ The most stable isotope of meitnerium cannot be determined based on existing data due to uncertainty that arises from the low number of measurements. The half-life of 278Mt corresponding to two standard deviations is, based on existing data, 4.5+7.0
    −2.6
    seconds[3], whereas that of 274Mt is 0.64+1.52
    −0.46
    seconds[4]; these measurements have overlapping confidence intervals. It is also possible that the unconfirmed 282Mt is more stable than both of these, with its half-life being 67 seconds.[5]

References

  1. ^ Emsley, John (2003). Nature's Building Blocks. Oxford University Press. ISBN 978-0198503408. Retrieved November 12, 2012.
  2. ^ Meitnerium. The Periodic Table of Videos. University of Nottingham. February 18, 2010. Retrieved October 15, 2012.
  3. ^ a b c Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  4. ^ Oganessian, Yu. Ts.; Utyonkov, V. K.; Kovrizhnykh, N. D.; et al. (2022). "New isotope 286Mc produced in the 243Am+48Ca reaction". Physical Review C. 106 (64306): 064306. Bibcode:2022PhRvC.106f4306O. doi:10.1103/PhysRevC.106.064306. S2CID 254435744.
  5. ^ a b c Hofmann, S.; Heinz, S.; Mann, R.; Maurer, J.; Münzenberg, G.; Antalic, S.; Barth, W.; Burkhard, H. G.; Dahl, L.; Eberhardt, K.; Grzywacz, R.; Hamilton, J. H.; Henderson, R. A.; Kenneally, J. M.; Kindler, B.; Kojouharov, I.; Lang, R.; Lommel, B.; Miernik, K.; Miller, D.; Moody, K. J.; Morita, K.; Nishio, K.; Popeko, A. G.; Roberto, J. B.; Runke, J.; Rykaczewski, K. P.; Saro, S.; Scheidenberger, C.; Schött, H. J.; Shaughnessy, D. A.; Stoyer, M. A.; Thörle-Popiesch, P.; Tinschert, K.; Trautmann, N.; Uusitalo, J.; Yeremin, A. V. (2016). "Review of even element super-heavy nuclei and search for element 120". The European Physics Journal A. 2016 (52). doi:10.1140/epja/i2016-16180-4.
  6. ^ a b c d Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 978-1-4020-3555-5.
  7. ^ Thierfelder, C.; Schwerdtfeger, P.; Heßberger, F. P.; Hofmann, S. (2008). "Dirac-Hartree-Fock studies of X-ray transitions in meitnerium". The European Physical Journal A. 36 (2): 227. Bibcode:2008EPJA...36..227T. doi:10.1140/epja/i2008-10584-7.
  8. ^ a b Östlin, A.; Vitos, L. (2011). "First-principles calculation of the structural stability of 6d transition metals". Physical Review B. 84 (11): 113104. Bibcode:2011PhRvB..84k3104O. doi:10.1103/PhysRevB.84.113104.
  9. ^ Gyanchandani, Jyoti; Sikka, S. K. (10 May 2011). "Physical properties of the 6 d -series elements from density functional theory: Close similarity to lighter transition metals". Physical Review B. 83 (17): 172101. Bibcode:2011PhRvB..83q2101G. doi:10.1103/PhysRevB.83.172101.
  10. ^ Kratz; Lieser (2013). Nuclear and Radiochemistry: Fundamentals and Applications (3rd ed.). p. 631.
  11. ^ Fricke, Burkhard (1975). "Superheavy elements: a prediction of their chemical and physical properties". Recent Impact of Physics on Inorganic Chemistry. Structure and Bonding. 21: 89–144. doi:10.1007/BFb0116498. ISBN 978-3-540-07109-9. Retrieved 4 October 2013.
  12. ^ Chemical Data. Meitnerium - Mt, Royal Chemical Society
  13. ^ Saito, Shiro L. (2009). "Hartree–Fock–Roothaan energies and expectation values for the neutral atoms He to Uuo: The B-spline expansion method". Atomic Data and Nuclear Data Tables. 95 (6): 836–870. Bibcode:2009ADNDT..95..836S. doi:10.1016/j.adt.2009.06.001.