In mathematics, twisted K-theory (also called K-theory with local coefficients[1]) is a variation on K-theory, a mathematical theory from the 1950s that spans algebraic topology, abstract algebra and operator theory.

More specifically, twisted K-theory with twist H is a particular variant of K-theory, in which the twist is given by an integral 3-dimensional cohomology class. It is special among the various twists that K-theory admits for two reasons. First, it admits a geometric formulation. This was provided in two steps; the first one was done in 1970 (Publ. Math. de l'IHÉS) by Peter Donovan and Max Karoubi; the second one in 1988 by Jonathan Rosenberg in Continuous-Trace Algebras from the Bundle Theoretic Point of View.

In physics, it has been conjectured to classify D-branes, Ramond-Ramond field strengths and in some cases even spinors in type II string theory. For more information on twisted K-theory in string theory, see K-theory (physics).

In the broader context of K-theory, in each subject it has numerous isomorphic formulations and, in many cases, isomorphisms relating definitions in various subjects have been proven. It also has numerous deformations, for example, in abstract algebra K-theory may be twisted by any integral cohomology class.

Definition

edit

To motivate Rosenberg's geometric formulation of twisted K-theory, start from the Atiyah–Jänich theorem, stating that

 

the Fredholm operators on Hilbert space  , is a classifying space for ordinary, untwisted K-theory. This means that the K-theory of the space   consists of the homotopy classes of maps

 

from   to  

A slightly more complicated way of saying the same thing is as follows. Consider the trivial bundle of   over  , that is, the Cartesian product of   and  . Then the K-theory of   consists of the homotopy classes of sections of this bundle.

We can make this yet more complicated by introducing a trivial

 

bundle   over  , where   is the group of projective unitary operators on the Hilbert space  . Then the group of maps

 

from   to   which are equivariant under an action of   is equivalent to the original groups of maps

 

This more complicated construction of ordinary K-theory is naturally generalized to the twisted case. To see this, note that   bundles on   are classified by elements   of the third integral cohomology group of  . This is a consequence of the fact that   topologically is a representative Eilenberg–MacLane space

 .

The generalization is then straightforward. Rosenberg has defined

 ,

the twisted K-theory of   with twist given by the 3-class  , to be the space of homotopy classes of sections of the trivial   bundle over   that are covariant with respect to a   bundle   fibered over   with 3-class  , that is

 

Equivalently, it is the space of homotopy classes of sections of the   bundles associated to a   bundle with class  .

Relation to K-theory

edit

When   is the trivial class, twisted K-theory is just untwisted K-theory, which is a ring. However, when   is nontrivial this theory is no longer a ring. It has an addition, but it is no longer closed under multiplication.

However, the direct sum of the twisted K-theories of   with all possible twists is a ring. In particular, the product of an element of K-theory with twist   with an element of K-theory with twist   is an element of K-theory twisted by  . This element can be constructed directly from the above definition by using adjoints of Fredholm operators and construct a specific 2 x 2 matrix out of them (see the reference 1, where a more natural and general Z/2-graded version is also presented). In particular twisted K-theory is a module over classical K-theory.

Calculations

edit

Physicist typically want to calculate twisted K-theory using the Atiyah–Hirzebruch spectral sequence.[2] The idea is that one begins with all of the even or all of the odd integral cohomology, depending on whether one wishes to calculate the twisted   or the twisted  , and then one takes the cohomology with respect to a series of differential operators. The first operator,  , for example, is the sum of the three-class  , which in string theory corresponds to the Neveu-Schwarz 3-form, and the third Steenrod square,[3] so

 

No elementary form for the next operator,  , has been found, although several conjectured forms exist. Higher operators do not contribute to the  -theory of a 10-manifold, which is the dimension of interest in critical superstring theory. Over the rationals Michael Atiyah and Graeme Segal have shown that all of the differentials reduce to Massey products of  .[4]

After taking the cohomology with respect to the full series of differentials one obtains twisted  -theory as a set, but to obtain the full group structure one in general needs to solve an extension problem.

Example: the three-sphere

edit

The three-sphere,  , has trivial cohomology except for   and   which are both isomorphic to the integers. Thus the even and odd cohomologies are both isomorphic to the integers. Because the three-sphere is of dimension three, which is less than five, the third Steenrod square is trivial on its cohomology and so the first nontrivial differential is just  . The later differentials increase the degree of a cohomology class by more than three and so are again trivial; thus the twisted  -theory is just the cohomology of the operator   which acts on a class by cupping it with the 3-class  .

Imagine that   is the trivial class, zero. Then   is also trivial. Thus its entire domain is its kernel, and nothing is in its image. Thus   is the kernel of   in the even cohomology, which is the full even cohomology, which consists of the integers. Similarly   consists of the odd cohomology quotiented by the image of  , in other words quotiented by the trivial group. This leaves the original odd cohomology, which is again the integers. In conclusion,   and   of the three-sphere with trivial twist are both isomorphic to the integers. As expected, this agrees with the untwisted  -theory.

Now consider the case in which   is nontrivial.   is defined to be an element of the third integral cohomology, which is isomorphic to the integers. Thus   corresponds to a number, which we will call  .   now takes an element   of   and yields the element   of  . As   is not equal to zero by assumption, the only element of the kernel of   is the zero element, and so  . The image of   consists of all elements of the integers that are multiples of  . Therefore, the odd cohomology,  , quotiented by the image of  ,  , is the cyclic group of order  ,  . In conclusion

 

In string theory this result reproduces the classification of D-branes on the 3-sphere with   units of  -flux, which corresponds to the set of symmetric boundary conditions in the supersymmetric   WZW model at level  .

There is an extension of this calculation to the group manifold of SU(3).[5] In this case the Steenrod square term in  , the operator  , and the extension problem are nontrivial.

See also

edit

Notes

edit
  1. ^ Donavan, Peter; Karoubi, Max (1970). "Graded Brauer groups and $K$-theory with local coefficients". Publications Mathématiques de l'IHÉS. 38: 5–25.
  2. ^ A guide to such calculations in the case of twisted K-theory can be found in E8 Gauge Theory, and a Derivation of K-Theory from M-Theory by Emanuel Diaconescu, Gregory Moore and Edward Witten (DMW).
  3. ^ (DMW) also provide a crash course in Steenrod squares for physicists.
  4. ^ In Twisted K-theory and cohomology.
  5. ^ In D-Brane Instantons and K-Theory Charges by Juan Maldacena, Gregory Moore and Nathan Seiberg.

References

edit
edit